Breaking News

FISICOS

  • Alfred Nobel
(1833-1896) químico, inventor y filántropo sueco nacido en Estocolmo. Tras recibir una educación académica en San Petersburgo (Rusia) y en los Estados Unidos —donde estudió ingeniería mecánica— regresó a San Petersburgo para trabajar con su padre, elaborando minas, torpedos y otros explosivos. En una fábrica familiar en Heleneborg (Suecia), trató de desarrollar un método seguro para manipular la nitroglicerina, después de que una explosión en 1864 matara a su hermano pequeño y a otras cuatro personas. En 1867 Nobel consiguió su objetivo: para reducir la volatilidad de la nitroglicerina la mezcló con un material poroso absorbente y produjo lo que llamó dinamita. Posteriormente creó la balistita, una de las primeras pólvoras sin humo. Cuando murió, dirigía fábricas para la elaboración de explosivos en diversas partes del mundo. En su testamento legó la mayor parte de su fortuna (estimada en unos 9 millones de dólares) para crear una fundación que estableciera premios anuales por los méritos realizados en física, química, medicina y fisiología, literatura y paz mundial. El premio de economía se concedió a partir del año 1969.
  • Stephen William Hawking
(1942- ), físico teórico británico, conocido por sus intentos de aunar la relatividad general con la teoría cuántica y por sus aportaciones íntegramente relacionadas con la cosmología. Nació en Londres y obtuvo el doctorado en la Universidad de Cambridge, donde trabajó como profesor de matemáticas desde 1979. Gran parte de su trabajo hace referencia al concepto de agujero negro. Su investigación indica que la relatividad general, si es cierta, apoya la teoría de que la creación del Universo tuvo su origen a partir de una Gran Explosión o Big Bang, surgida de una singularidad o un punto de distorsión infinita del espacio y el tiempo. Más tarde depuró este concepto considerando todas estas teorías como intentos secundarios de describir una realidad, en la que conceptos como la singularidad no tienen sentido y donde el espacio y el tiempo forman una superficie cerrada sin fronteras. Ha escrito Historia del tiempo: del Big Bang a los agujeros negros (1988) y otras obras que se han convertido en best-sellers. Hawking ha hecho estas importantes aportaciones a la ciencia mientras lucha contra la esclerosis lateral amiotrófica, una enfermedad incurable del sistema nervioso. En 1989 le fue concedido en España el Premio Príncipe de Asturias de la Concordia.



William Thomson Kelvin

(1824-1907), matemático y físico británico, uno de los principales físicos y más importantes profesores de su época.

Nació en Belfast el 26 de junio de 1824 y estudió en las universidades de Glasgow y Cambridge. Desde 1846 hasta 1899 fue profesor de la Universidad de Glasgow.

En el campo de la termodinámica, Kelvin desarrolló el trabajo realizado por James Prescott Joule sobre la interrelación del calor y la energía mecánica, y en 1852 ambos colaboraron para investigar el fenómeno al que se conoció como efecto Joule-Thomson (véase Criogenia). En 1848 Kelvin estableció la escala absoluta de temperatura que sigue llevando su nombre. Su trabajo en el campo de la electricidad tuvo aplicación en la telegrafía. Estudió la teoría matemática de la electrostática, llevó a cabo mejoras en la fabricación de cables e inventó el galvanómetro de imán móvil y el sifón registrador. Ejerció como asesor científico en el tendido de cables telegráficos del Atlántico en 1857, 1858, 1865 y 1866. Kelvin también contribuyó a la teoría de la elasticidad e investigó los circuitos oscilantes, las propiedades electrodinámicas de los metales y el tratamiento matemático del magnetismo. Junto con el fisiólogo y físico alemán Hermann Ludwig von Helmholtz, hizo una estimación de la edad del Sol y calculó la energía irradiada desde su superficie. Entre los aparatos que inventó o mejoró se encuentran un dispositivo para predecir mareas, un analizador armónico y un aparato para grabar sonidos en aguas más o menos profundas. También mejoró aspectos de la brújula marina o compás náutico.

Muchas de sus obras científicas se recopilaron en su Ponencias sobre electricidad y magnetismo (1872), Ponencias matemáticas y físicas (1882, 1883, 1890) y Cursos y conferencias (1889-1894). Kelvin fue presidente de la Sociedad Real de Londres en 1890, y en 1902 recibió la Orden del Mérito. Murió el 17 de diciembre de 1907.
  • Anders Celsius
(1701-1744), astrónomo sueco, fue el primero que propuso el termómetro centígrado, que tiene una escala de 100 grados que separan el punto de ebullición y el de congelación del agua. Desde 1730 hasta 1744 fue catedrático de astronomía en la Universidad de Uppsala, construyó el observatorio de esta ciudad en 1740, y fue nombrado su director. En 1733 publicó su colección de 316 observaciones sobre la aurora boreal y en 1737 formó parte de la expedición francesa organizada para medir un grado de latitud en las regiones polares.
  • Alessandro Volta


(1745-1827), físico italiano, conocido por sus trabajos sobre la electricidad. Nació en Como y estudió allí, en la escuela pública. En 1774 fue profesor de física en la Escuela Regia de Como y al año siguiente inventó el electróforo, un instrumento que producía cargas eléctricas. Durante 1776 y 1777 se dedicó a la química, estudió la electricidad atmosférica e ideó experimentos como la ignición de gases mediante una chispa eléctrica en un recipiente cerrado. En 1779 fue profesor de física en la Universidad de Pavía, cátedra que ocupó durante 25 años. Hacia 1800 había desarrollado la llamada pila de Volta, precursora de la batería eléctrica, que producía un flujo estable de electricidad. Por su trabajo en el campo de la electricidad, Napoleón le nombró conde en 1801. La unidad eléctrica conocida como voltio recibió ese nombre en su honor.


Arquímedes


(287-212 a.C.), notable matemático e inventor griego, que escribió importantes obras sobre geometría plana y del espacio, aritmética y mecánica.

Nació en Siracusa, Sicilia, y se educó en Alejandría, Egipto. En el campo de las matemáticas puras, se anticipó a muchos de los descubrimientos de la ciencia moderna, como el cálculo integral, con sus estudios de áreas y volúmenes de figuras sólidas curvadas y de áreas de figuras planas. Demostró también que el volumen de una esfera es dos tercios del volumen del cilindro que la circunscribe.

En mecánica, Arquímedes definió la ley de la palanca y se le reconoce como el inventor de la polea compuesta. Durante su estancia en Egipto inventó el 'tornillo sin fin' para elevar el agua de nivel. Arquímedes es conocido sobre todo por el descubrimiento de la ley de la hidrostática, el llamado principio de Arquímedes, que establece que todo cuerpo sumergido en un fluido experimenta una pérdida de peso igual al peso del volumen del fluido que desaloja (véase Mecánica de fluidos). Se dice que este descubrimiento lo hizo mientras se bañaba, al comprobar cómo el agua se desplazaba y se desbordaba.

Arquímedes pasó la mayor parte de su vida en Sicilia, en Siracusa y sus alrededores, dedicado a la investigación y los experimentos. Aunque no tuvo ningún cargo público, durante la conquista de Sicilia por los romanos se puso a disposición de las autoridades de la ciudad y muchos de sus instrumentos mecánicos se utilizaron en la defensa de Siracusa. Entre la maquinaria de guerra cuya invención se le atribuye está la catapulta y un sistema de espejos —quizá legendario— que incendiaba las embarcaciones enemigas al enfocarlas con los rayos del sol.

Al ser conquistada Siracusa, durante la segunda Guerra Púnica, fue asesinado por un soldado romano que le encontró dibujando un diagrama matemático en la arena. Se cuenta que Arquímedes estaba tan absorto en las operaciones que ofendió al intruso al decirle: “No desordenes mis diagramas”. Todavía subsisten muchas de sus obras sobre matemáticas y mecánica, como el Tratado de los cuerpos flotantes, El arenario y Sobre la esfera y el cilindro. Todas ellas muestran el rigor y la imaginación de su pensamiento matemático.

  • Michael Faraday


(1791-1867), físico y químico británico, conocido principalmente por sus descubrimientos de la inducción electromagnética y de las leyes de la electrólisis.

Faraday nació el 22 de septiembre de 1791 en Newington (Surrey). Era hijo de un herrero y recibió poca formación académica. Mientras trabajaba de aprendiz con un encuadernador de Londres, leyó libros de temas científicos y realizó experimentos en el campo de la electricidad. En 1812 asistió a una serie de conferencias impartidas por el químico sir Humphry Davy y envió a éste las notas que tomó en esas conferencias junto con una petición de empleo. Davy le contrató como ayudante en su laboratorio químico de la Institución Real y en 1813 le llevó con él a un largo viaje por Europa. Faraday entró en la Sociedad Real en 1824 y al año siguiente fue nombrado director del laboratorio de la Institución Real. En 1833 sucedió a Davy como profesor de química en esa institución. Dos años más tarde le fue concedida una pensión vitalicia de 300 libras anuales. Faraday recibió numerosos galardones científicos.

Realizó sus primeras investigaciones en el campo de la química bajo la dirección de Davy. Un estudio sobre el cloro le llevó al descubrimiento de dos nuevos cloruros de carbono. También descubrió el benceno. Faraday investigó nuevas variedades de vidrio óptico y llevó a cabo con éxito una serie de experimentos de licuefacción de gases comunes (véase Criogenia).

Sin embargo, las investigaciones que convirtieron a Faraday en el primer científico experimental de su época las realizó en los campos de la electricidad y el magnetismo. En 1821 trazó el campo magnético alrededor de un conductor por el que circula una corriente eléctrica (la existencia del campo magnético había sido observada por vez primera por el físico danés Hans Christian Oersted en 1819). En 1831 Faraday descubrió la inducción electromagnética, y el mismo año demostró la inducción de una corriente eléctrica por otra. Durante este mismo periodo investigó los fenómenos de la electrólisis (véase Electroquímica) y descubrió dos leyes fundamentales: que la masa de una sustancia depositada por una corriente eléctrica en una electrólisis es proporcional a la cantidad de electricidad que pasa por el electrólito, y que las cantidades de sustancias electrolíticas depositadas por la acción de una misma cantidad de electricidad son proporcionales a las masas equivalentes de las sustancias.

Sus experimentos en magnetismo le llevaron a dos descubrimientos de gran importancia. Uno fue la existencia del diamagnetismo y el otro fue comprobar que un campo magnético tiene fuerza para girar el plano de luz polarizada que pasa a través de ciertos tipos de cristal.
  • Isaac Newton


(1642-1727), matemático y físico británico, considerado uno de los más grandes científicos de la historia, que hizo importantes aportaciones en muchos campos de la ciencia. Sus descubrimientos y teorías sirvieron de base a la mayor parte de los avances científicos desarrollados desde su época. Newton fue junto al matemático alemán Gottfried Wilhelm Leibniz uno de los inventores de la rama de las matemáticas denominada cálculo. También resolvió cuestiones relativas a la luz y la óptica, formuló las leyes del movimiento y dedujo a partir de ellas la ley de la gravitación universal. Véase Mecánica.

Newton nació el 25 de diciembre de 1642 (según el calendario juliano vigente entonces; el 4 de enero de 1643, según el calendario gregoriano vigente en la actualidad), en Woolsthorpe, Lincolnshire. Cuando tenía tres años, su madre viuda se volvió a casar y lo dejó al cuidado de su abuela. Con el tiempo, su madre, que se quedó viuda por segunda vez, decidió enviarle a una escuela primaria en Grantham. Más tarde, en el verano de 1661, ingresó en el Trinity College de la Universidad de Cambridge.

Newton recibió su título de bachiller en 1665. Después de una interrupción de casi dos años provocada por una epidemia de peste, volvió al Trinity College, donde le nombraron becario en 1667. Recibió el título de profesor en 1668. Durante esta época se dedicó al estudio e investigación de los últimos avances en matemáticas y a la filosofía natural que consideraba la naturaleza como un organismo cuyo mecanismo era bastante complejo. Casi inmediatamente realizó descubrimientos fundamentales que le fueron de gran utilidad en su carrera científica.

Newton obtuvo en el campo de la matemáticas sus mayores logros. Generalizó los métodos que se habían utilizado para trazar líneas tangentes a curvas y para calcular el área encerrada bajo una curva, y descubrió que los dos procedimientos eran operaciones inversas. Uniéndolos en lo que él llamó el método de las fluxiones, Newton desarrolló en el otoño de 1666 lo que se conoce hoy como cálculo, un método nuevo y poderoso que situó a las matemáticas modernas por encima del nivel de la geometría griega.

Aunque Newton fue su inventor, no introdujo el cálculo en las matemáticas europeas. En 1675 Leibniz llegó de forma independiente al mismo método, al que llamó cálculo diferencial; su publicación hizo que Leibniz recibiera en exclusividad los elogios por el desarrollo de ese método, hasta 1704, año en que Newton publicó una exposición detallada del método de fluxiones, superando sus reticencias a divulgar sus investigaciones y descubrimientos por temor a ser criticado. Sin embargo, sus conocimientos trascendieron de manera que en 1669 obtuvo la cátedra Lucasiana de matemáticas en la Universidad de Cambridge.

La óptica fue otro área por la que Newton demostró interés muy pronto. Al tratar de explicar la forma en que surgen los colores llegó a la idea de que la luz del Sol es una mezcla heterogénea de rayos diferentes —representando cada uno de ellos un color distinto— y que las reflexiones y refracciones hacen que los colores aparezcan al separar la mezcla en sus componentes. Newton demostró su teoría de los colores haciendo pasar un rayo de luz solar a través de un prisma, el cual dividió el rayo de luz en colores independientes.

En 1672 Newton envió una breve exposición de su teoría de los colores a la Sociedad Real de Londres. Su publicación provocó tantas críticas que confirmaron su recelo a las publicaciones por lo que se retiró a la soledad de su estudio en Cambridge. En 1704, sin embargo, publicó su obra Óptica, en donde explicaba detalladamente su teoría.
  • Albert Einstein


(1879-1955), físico alemán nacionalizado estadounidense, premiado con un Nobel, famoso por ser el autor de las teorías general y restringida de la relatividad y por sus hipótesis sobre la naturaleza corpuscular de la luz. Es probablemente el científico más conocido del siglo XX.

Nació en Ulm el 14 de marzo de 1879 y pasó su juventud en Munich, donde su familia poseía un pequeño taller de máquinas eléctricas. Ya desde muy joven mostraba una curiosidad excepcional por la naturaleza y una capacidad notable para entender los conceptos matemáticos más complejos. A los doce años ya conocía la geometría de Euclides.

A la edad de 15 años, cuando su familia se trasladó a Milán, Italia, a causa de sucesivos fracasos en los negocios, Einstein abandonó la escuela. Pasó un año con sus padres en Milán y viajó a Suiza, donde terminó los estudios secundarios, e ingresó en el Instituto Politécnico Nacional de Zurich.

Durante dos años Einstein trabajó dando clases particulares y de profesor suplente. En 1902 consiguió un trabajo estable como examinador en la Oficina Suiza de Patentes en Berna.

En 1905 se doctoró por la Universidad de Zurich, con una tesis sobre las dimensiones de las moléculas; también publicó tres artículos teóricos de gran valor para el desarrollo de la física del siglo XX. En el primero de ellos, sobre el movimiento browniano, formuló predicciones importantes sobre el movimiento aleatorio de las partículas dentro de un fluido, predicciones que fueron comprobadas en experimentos posteriores. El segundo artículo, sobre el efecto fotoeléctrico, anticipaba una teoría revolucionaria sobre la naturaleza de la luz. Según Einstein, bajo ciertas circunstancias la luz se comportaba como una partícula. También afirmó que la energía que llevaba toda partícula de luz, denominada fotón, era proporcional a la frecuencia de la radiación. Lo representaba con la fórmula E = hu, donde E es la energía de la radiación, h una constante universal llamada constante de Planck y u es la frecuencia de la radiación. Esta teoría, que planteaba que la energía de los rayos luminosos se transfería en unidades individuales llamadas cuantos, contradecía las teorías anteriores que consideraban que la luz era la manifestación de un proceso continuo. Las tesis de Einstein apenas fueron aceptadas. De hecho, cuando el físico estadounidense Robert Andrews Millikan confirmó experimentalmente sus tesis casi una década después, éste se mostró sorprendido e inquieto por los resultados.

Einstein, interesado por comprender la naturaleza de la radiación electromagnética, propugnó el desarrollo de una teoría que fusionara las ondas y partículas de la luz. De nuevo fueron muy pocos los científicos que comprendieron y aceptaron estas ideas.

La tercera publicación de Einstein en 1905, Sobre la electrodinámica de los cuerpos en movimiento, formulaba lo que después llegó a conocerse como la teoría especial de la relatividad (o teoría restringida de la relatividad). Desde los tiempos del matemático y físico inglés Isaac Newton, los filósofos de las ciencias naturales (nombre que recibían los físicos y químicos) habían intentado comprender la naturaleza de la materia y la radiación, y su interacción en algunos modelos unificados del mundo. La hipótesis que sostenía que las leyes mecánicas eran fundamentales se denominó visión mecánica del mundo. La hipótesis que mantenía que eran las leyes eléctricas las fundamentales recibió el nombre de visión electromagnética del mundo. Ninguna de las dos concepciones era capaz de explicar con fundamento la interacción de la radiación (por ejemplo, la luz) y la materia al ser observadas desde diferentes sistemas de inercia de referencia, o sea, la interacción producida en la observación simultánea por una persona parada y otra moviéndose a una velocidad constante.

En la primavera de 1905, tras haber reflexionado sobre estos problemas durante diez años, Einstein se dio cuenta de que la solución no estaba en la teoría de la materia sino en la teoría de las medidas. En el fondo de su teoría restringida de la relatividad se encontraba el hallazgo de que toda medición del espacio y del tiempo es subjetiva. Esto le llevó a desarrollar una teoría basada en dos premisas: el principio de la relatividad, según el cual las leyes físicas son las mismas en todos los sistemas de inercia de referencia, y el principio de la invariabilidad de la velocidad de la luz, según el cual la velocidad de la luz en el vacío es constante. De este modo pudo explicar los fenómenos físicos observados en sistemas de inercia de referencia distintos, sin tener que entrar en la naturaleza de la materia o de la radiación y su interacción, pero nadie entendió su razonamiento.

La dificultad de otros científicos para aceptar la teoría de Einstein no estribaba en sus complejos cálculos matemáticos y su dificultad técnica, sino que partía del concepto que tenía Einstein de las buenas teorías y su relación con la experimentación. Aunque sostenía que la única fuente del conocimiento era la experiencia, también pensaba que las teorías científicas eran creaciones libres de una aguda intuición física, y que las premisas en que se basaban no podían aplicarse de un modo lógico al experimento. Una buena teoría sería, pues, aquella que necesitara los mínimos postulados para explicar un hecho físico. Esta escasez de postulados, característica de la obra de Einstein, provocó que su trabajo no fuera accesible para sus colegas, que le dejaron solo.

Aun así, tenía importantes seguidores. Su primer defensor fue el físico alemán Max Planck. Einstein permaneció cuatro años en la oficina de patentes, y luego empezó a destacar dentro de la comunidad científica, y así ascendió en el mundo académico de lengua alemana. Primero fue a la Universidad de Zurich en 1909; dos años más tarde se trasladó a la Universidad de Praga, de lengua alemana, y en 1912 regresó al Instituto Politécnico Nacional de Zurich. Finalmente, en 1913 fue nombrado director del Instituto de Física Kaiser Guillermo en Berlín.

Antes de dejar la oficina de patentes, en 1907, Einstein ya trabajaba en la extensión y generalización de la teoría de la relatividad a todo sistema de coordenadas. Empezó con el enunciado del principio de equivalencia según el cual los campos gravitacionales son equivalentes a las aceleraciones del sistema de referencia. De este modo, una persona que viajara en un elevador o ascensor no podría en principio determinar si la fuerza que actúa sobre ella se debe a la gravitación o a la aceleración constante del ascensor. Esta teoría general completa de la relatividad no fue publicada hasta 1916. De acuerdo con ella, las interacciones entre los cuerpos, que hasta entonces se atribuían a fuerzas gravitacionales, se explican por la influencia de aquéllos sobre la geometría espacio-tiempo (espacio de cuatro dimensiones, una abstracción matemática en la que el espacio se une, como cuarta dimensión, a las tres dimensiones euclidianas).

Basándose en la teoría general de la relatividad, Einstein pudo entender las variaciones hasta entonces inexplicables del movimiento de rotación de los planetas y logró predecir la inclinación de la luz de las estrellas al aproximarse a cuerpos como el Sol. La confirmación de este fenómeno durante un eclipse de Sol en 1919 fue toda una noticia y su fama se extendió por el mundo.

Einstein consagró gran parte del resto de su vida a generalizar su teoría. Su último trabajo, la teoría del campo unificado, que no tuvo demasiado éxito, consistía en un intento de explicar todas las interacciones físicas, incluidas la interacción electromagnética y las interacciones nucleares fuerte y débil, a través de la modificación de la geometría del espacio-tiempo entre entidades interactivas.

La mayoría de sus colegas pensaron que sus esfuerzos iban en dirección equivocada. Entre 1915 y 1930 la corriente principal entre los físicos era el desarrollo de una nueva concepción del carácter fundamental de la materia, conocida como la teoría cuántica. Esta teoría contempla la característica de la dualidad onda-partícula (la luz presenta las propiedades de una partícula, así como las de una onda), que Einstein había intuido como necesaria, y el principio de incertidumbre, que establece que la exactitud de los procedimientos de medición es limitada. Además, esta teoría suponía un rechazo fundamental a la noción estricta de causalidad. Sin embargo, Einstein mantuvo una posición crítica respecto a estas tesis hasta el final de su vida. "Dios no juega a los dados con el mundo", llegó a decir.

A partir de 1919, Einstein recibió el reconocimiento internacional y acumuló honores y premios de distintas sociedades científicas, como el Nobel de Física en 1922. Sus visitas a países de todo el mundo (visitó España en 1923 y Argentina, Uruguay y Brasil en 1925) eran un acontecimiento; le seguían fotógrafos y periodistas.

El pacifismo y el sionismo fueron los dos movimientos sociales que recibieron todo su apoyo. Durante la I Guerra Mundial, Einstein fue uno de los pocos académicos alemanes que condenaron públicamente la participación de Alemania en el conflicto. Después de la guerra siguió con sus actividades pacifistas y sionistas, por lo que fue blanco de los ataques de grupos antisionistas y de derechas alemanes. Sus teorías llegaron a ser ridiculizadas en público, especialmente la de la relatividad.

Cuando Hitler llegó al poder en 1933, Einstein abandonó Alemania y emigró a Estados Unidos, donde ocupó un puesto en el Instituto de Estudios Superiores en Princeton, Nueva Jersey. Siguió con sus actividades en favor del sionismo pero abandonó su postura pacifista anterior a la vista de la amenaza que suponía para la humanidad el régimen nazi en Alemania.

En 1939 Einstein participó junto con otros físicos en la redacción de una carta dirigida al presidente Franklin D. Roosevelt en la que se pedía la creación de un programa de investigación sobre las reacciones en cadena. La carta, que sólo iba firmada por Einstein, consiguió acelerar la fabricación de la bomba atómica, en la que él no participó ni supo de su finalización. En 1945, cuando ya era evidente la existencia de la bomba, Einstein volvió a escribir al presidente para intentar disuadirlo de utilizar el arma nuclear.

Después de la guerra, Einstein se convirtió en activista del desarme internacional y del gobierno mundial, y siguió contribuyendo a la causa del sionismo, pero declinó una oferta de los líderes del Estado de Israel para ocupar el cargo de presidente. A finales de la década de 1940 y principios de la de 1950, defendió en Estados Unidos la necesidad de que los intelectuales del país hicieran todo lo posible para mantener la libertad política. Einstein murió el 18 de abril de 1955 en Princeton.

Los esfuerzos de Einstein en apoyo de causas sociales fueron a menudo percibidos como poco realistas. Sus propuestas nacían de razonamientos cuidadosamente elaborados. Al igual que sus teorías, eran fruto de una asombrosa intuición basada en cuidadosas y astutas valoraciones y en la observación. A pesar de su actividad en favor de causas políticas y sociales, la ciencia siempre ocupó el primer lugar en su vida, pues, como solía decir, sólo el descubrimiento de la naturaleza del Universo tiene un sentido duradero. Entre sus obras se encuentran La relatividad: la teoría especial y restringida (1916); Sobre el sionismo (1931); Los constructores del Universo (1932); ¿Por qué la guerra? (1933), con Sigmund Freud; El mundo como yo lo veo (1934); La evolución de la Física (1938) con el físico polaco Leopold Infeld, y En mis últimos años (1950). La colección de los artículos de Einstein comenzó a publicarse en 1987 en varios volúmenes.
  • Johannes Kepler


(1571-1630), astrónomo y filósofo alemán, famoso por formular y verificar las tres leyes del movimiento planetario conocidas como leyes de Kepler.

Kepler nació el 27 de diciembre de 1571, en Weil der Stadt, en Württemberg, y estudió teología y clásicas en la Universidad de Tübingen. Allí le influenció un profesor de matemáticas, Michael Maestlin, partidario de la teoría heliocéntrica del movimiento planetario desarrollada en principio por el astrónomo polaco Nicolás Copérnico. Kepler aceptó inmediatamente la teoría copernicana al creer que la simplicidad de su ordenamiento planetario tenía que haber sido el plan de Dios. En 1594, cuando Kepler dejó Tübingen y marchó a Graz (Austria), elaboró una hipótesis geométrica compleja para explicar las distancias entre las órbitas planetarias —órbitas que se consideraban circulares erróneamente. (Posteriormente, Kepler dedujo que las órbitas de los planetas son elípticas; sin embargo, estos primeros cálculos sólo coinciden en un 5% con la realidad.) Kepler planteó que el Sol ejerce una fuerza que disminuye de forma inversamente proporcional a la distancia e impulsa a los planetas alrededor de sus órbitas. Publicó sus teorías en un tratado titulado Mysterium Cosmographicum en 1596. Esta obra es importante porque presentaba la primera demostración amplia y convincente de las ventajas geométricas de la teoría copernicana.

Kepler fue profesor de astronomía y matemáticas en la Universidad de Graz desde 1594 hasta 1600, cuando se convirtió en ayudante del astrónomo danés Tycho Brahe en su observatorio de Praga. A la muerte de Brahe en 1601, Kepler asumió su cargo como matemático imperial y astrónomo de la corte del emperador Rodolfo II. Una de sus obras más importantes durante este periodo fue Astronomía nova (1609), la gran culminación de sus cuidadosos esfuerzos para calcular la órbita de Marte. Este tratado contiene la exposición de dos de las llamadas leyes de Kepler sobre el movimiento planetario. Según la primera ley, los planetas giran en órbitas elípticas con el Sol en un foco. La segunda, o regla del área, afirma que una línea imaginaria desde el Sol a un planeta recorre áreas iguales de una elipse durante intervalos iguales de tiempo. En otras palabras, un planeta girará con mayor velocidad cuanto más cerca se encuentre del Sol.

En 1612 Kepler se hizo matemático de los estados de la Alta Austria. Mientras vivía en Linz, publicó su Harmonices mundi, Libri (1619), cuya sección final contiene otro descubrimiento sobre el movimiento planetario (tercera ley): la relación del cubo de la distancia media (o promedio) de un planeta al Sol y el cuadrado del periodo de revolución del planeta es una constante y es la misma para todos los planetas.

Hacia la misma época publicó un libro, Epitome astronomiae copernicanae (1618-1621), que reúne todos los descubrimientos de Kepler en un solo tomo. Igualmente importante fue el primer libro de texto de astronomía basado en los principios copernicanos, y durante las tres décadas siguientes tuvo una influencia capital convirtiendo a muchos astrónomos al copernicanismo kepleriano.

La última obra importante aparecida en vida de Kepler fueron las Tablas rudolfinas (1625). Basándose en los datos de Brahe, las nuevas tablas del movimiento planetario reducen los errores medios de la posición real de un planeta de 5 °a 10'. El matemático y físico inglés sir Isaac Newton se basó en las teorías y observaciones de Kepler para formular su ley de la gravitación universal.

Kepler también realizó aportaciones en el campo de la óptica y desarrolló un sistema infinitesimal en matemáticas, que fue un antecesor del cálculo.

Murió el 15 de noviembre de 1630 en Regensburg.
  • Niels Bohr


(1885-1962), físico danés, galardonado con el premio Nobel, que hizo aportaciones fundamentales en el campo de la física nuclear y en el de la estructura atómica.

Bohr nació en Copenhague el 7 de octubre de 1885; era hijo de un profesor de fisiología y estudió en la universidad de su ciudad natal, donde alcanzó el doctorado en 1911. Ese mismo año fue a la Universidad de Cambridge (Inglaterra) para estudiar física nuclear con J.J. Thomson, pero pronto se trasladó a la Universidad de Manchester para trabajar con Ernest Rutherford.

La teoría de la estructura atómica de Bohr, que le valió el Premio Nobel de Física en 1922, se publicó en una memoria entre 1913 y 1915. Su trabajo giró sobre el modelo nuclear del átomo de Rutherford, en el que el átomo se ve como un núcleo compacto rodeado por un enjambre de electrones más ligeros. El modelo de átomo de Bohr utilizó la teoría cuántica y la constante de Planck. El modelo de Bohr establece que un átomo emite radiación electromagnética sólo cuando un electrón del átomo salta de un nivel cuántico a otro. Este modelo contribuyó enormemente al desarrollo de la física atómica teórica.

En 1916, Bohr regresó a la Universidad de Copenhague como profesor de física, y en 1920 fue nombrado director del Instituto de Física Teórica de esa universidad, recién constituido. Allí, Bohr elaboró una teoría que relaciona los números cuánticos de los átomos con los grandes sistemas que siguen las leyes clásicas, y realizó otras importantes aportaciones a la física teórica. Su trabajo ayudó a impulsar el concepto de que los electrones se encuentran en capas y que los de la última capa determinan las propiedades químicas de un átomo.

En 1939, reconociendo el significado de los experimentos de la fisión (véase Energía nuclear) de los científicos alemanes Otto Hahn y Fritz Strassmann, Bohr convenció a los físicos en una conferencia en Estados Unidos de la importancia de estos experimentos. Más tarde, demostró que el uranio 235 es el isótopo del uranio que experimenta la fisión nuclear. Bohr regresó posteriormente a Dinamarca, donde fue obligado a permanecer después de la ocupación alemana del país en 1940. Sin embargo, consiguió llegar a Suecia con gran peligro de su vida y de la de su familia. Desde Suecia, la familia Bohr viajó a Inglaterra y por último a los Estados Unidos, donde Bohr se incorporó al equipo que trabajaba en la construcción de la primera bomba atómica en Los Álamos (Nuevo México), hasta su explosión en 1945. Bohr se opuso, sin embargo, a que el proyecto se llevara a cabo en total secreto, y temía las consecuencias de este siniestro nuevo invento. Deseaba un control internacional.

En 1945, Bohr regresó a la Universidad de Copenhague donde, inmediatamente, comenzó a desarrollar usos pacifistas para la energía atómica. Organizó la primera conferencia 'Átomos para la paz' en Ginebra, celebrada en 1955, y dos años más tarde recibió el primer premio 'Átomos para la paz'. Bohr murió el 18 de diciembre de 1962 en Copenhague.
  • Amedeo Avogadro, conde de Quaregna e Ceretto


(1776-1856), físico y químico italiano que planteó la hipótesis conocida posteriormente como ley de Avogadro. Nació en Turín y estudió leyes. Comenzó a interesarse por las matemáticas y la física y, después de varios años de estudio, fue nombrado profesor en el Colegio Real de Vercelli. Desde 1820 hasta su muerte, Avogadro fue catedrático de Física en la Universidad de Turín. Aunque también realizó investigaciones en electricidad y sobre las propiedades físicas de los líquidos, es más conocido por su trabajo sobre los gases, que le llevó a formular en 1811 la ley que ahora lleva su nombre.

La ley de Avogadro sostiene que dos volúmenes iguales de gas a la misma temperatura y a la misma presión contienen el mismo número de moléculas. Actualmente reconocida como cierta, esta ley no fue aceptada universalmente hasta 1850.
  • Johann Jakob Balmer
(1825-1898), físico y matemático suizo, nacido en Lausanne. En 1885, Balmer descubrió una fórmula matemática sencilla que daba los valores de la longitud de onda de una cierta serie de líneas espectrales del hidrógeno. Esta serie de líneas espectrales se denomina actualmente serie de Balmer (véase Espectroscopia). La razón de que la fórmula de Balmer diera los valores correctos de la longitud de onda no se entendió hasta el desarrollo de la teoría cuántica, a comienzos del siglo XX.
  • Angström Anders Jonas
(1814-1874), astrónomo y físico sueco. Nació en Lögdö, Medelpad, y estudió en la Universidad de Uppsala. Después de graduarse, enseñó física en esa misma universidad desde 1839 hasta su muerte. Desde 1867 fue secretario de la Real Sociedad de Ciencias de Uppsala. Ångström fue pionero en el estudio del espectro. Este trabajo le llevó en 1862 al descubrimiento de la existencia de hidrógeno en la atmósfera del Sol. Una unidad de medida de longitud, el ángstrom, recibió este nombre en su honor.
  • Francis William Aston
(1877-1945), físico y premio Nobel británico, nació en Harborne (Birmingham), y estudió en el Malvern College de la Universidad de Birmingham, y en el Trinity College de la Universidad de Cambridge. Aston construyó (1919) el primer espectrómetro de masas con el que demostró que muchos elementos son la mezcla de dos o más isótopos con una masa atómica ligeramente distinta. La obra de Aston fue el primer estudio cuantitativo aplicable a todos los elementos. Por sus descubrimientos, recibió muchos premios, incluido el Nobel de Química en 1922. Escribió Los isótopos (1922) y Espectros de masa e isótopos (1933).
  • Carl David Anderson
(1905-1991), físico estadounidense y premio Nobel. Nació en la ciudad de Nueva York y estudió en el Instituto de Tecnología de California, donde alcanzó una cátedra en 1939. En 1932 descubrió el positrón o electrón positivo, una de las partículas subatómicas fundamentales. Por este descubrimiento recibió, junto con Victor Franz Hess, en 1936 el Premio Nobel de Física. Ese mismo año, confirmó también de forma experimental la existencia de partículas nucleares elementales llamadas mesones, que habían sido pronosticadas en 1935 por el físico japonés Yukawa Hideki.

No hay comentarios